Effect of bonding time on microstructure and mechanical properties during TLP bonding of nickel-base superalloys Hastelloy C276 and Stainless Steel AISI316

Authors

  • Mostaan, H. Department of Materials Science & Engineering, Arak University, Arak, Iran.
  • Niroumand, Behzad Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
  • Shamanian, M. Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
  • taghvaei, M. M. Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
Abstract:

Joining of Hastelloy C276 nickel-base superalloy to AISI316 Stainless Steel using BNi-2 interlayer performed by transient liquid phase process (TLP) at 1150°C for 5 and 30 minutes. Bonding microstructure was studied using an Optical microscope and a scanning electron microscope (SEM). Vickers hardness test and shear strength test have been used to evaluate the mechanical properties. Microstructural studies showed that at 5 and 30 minutes of bonding time, isothermal solidification is completely formed, and the Center of the joint is free of any eutectic intermetallic compounds. Also, Findings showed that the DAZ of Hastelloy C276 nickel-base superalloy contains rich borides of Ni, Cr, Mo, and W, and the DAZ of 316 austenitic stainless steel contains borides rich in Fe, Cr, and Ni.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Effect of bonding temperature on the microstructure and electrochemical corrosion behavior of TLP ‎bonded AISI 304L stainless steel

Transient liquid phase (TLP) bonding of AISI 304L stainless steel was carried out using BNi-2 amorphous interlayer. The microstructure of the joint area was studied by using optical and scanning electron microscopes and energy dispersive spectroscopy. The effect of bonding temperature (1030-1110 °C) was studied on the microstructure and corrosion behavior of the TLP bonded samples. Electrochemi...

full text

Effect of bonding temperature on the microstructure and electrochemical corrosion behavior of TLP ‎bonded AISI 304L stainless steel

Transient liquid phase (TLP) bonding of AISI 304L stainless steel was carried out using BNi-2 amorphous interlayer. The microstructure of the joint area was studied by using optical and scanning electron microscopes and energy dispersive spectroscopy. The effect of bonding temperature (1030-1110 °C) was studied on the microstructure and corrosion behavior of the TLP bonded samples. Electrochemi...

full text

Effect of Thermomechanical Processing on the Microstructure and Mechanical Properties of a Duplex Stainless Steel

Duplex stainless steels (DSSS) have a microstructure composed of ferrite and austenite phases that gives them a very good combination of mechanical and corrosion properties. These steels are desirable for many applications in the chemical and petrochemical industries. In the present study, a type of stainless steel was cast, solution annealed at 1200°C for 60 min and then quenched in water. Ini...

full text

determination of some physical and mechanical properties red bean

چکیده: در این تحقیق، برخی خواص فیزیکی و مکانیکی لوبیا قرمز به-صورت تابعی از محتوی رطوبت بررسی شد. نتایج نشان داد که رطوبت بر خواص فیزیکی لوبیا قرمز شامل طول، عرض، ضخامت، قطر متوسط هندسی، قطر متوسط حسابی، سطح تصویر شده، حجم، چگالی توده، تخلخل، وزن هزار دانه و زاویه ی استقرار استاتیکی در سطح احتمال 1 درصد اثر معنی داری دارد. به طوری که با افزایش رطوبت از 54/7 به 12 درصد بر پایه خشک طول، عرض، ضخام...

15 صفحه اول

The effect of bonding temperature on the microstructure and mechanical properties of 939 super alloy by transient liquid phase bonding method

In this research, the effect of bonding temperature on the microstructure and mechanical properties of Inconel 939 super alloy by transient liquid phase bonding method. For this purpose, the middle layer of MBF20 with a thickness of 50 microns and three temperatures of 1060 °C, 1120 °C, 1180 °C and a time of 45 minutes have been used. In order to evaluate the microstructure, a scanning electron...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 2

pages  1- 12

publication date 2023-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023